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Abstract 

The application of Tikhonov's regularization method 
[Tikhonov & Arsenin (1977). Solution of Ill-Posed 
Problems. New York: Wiley] for the solution of ill- 
posed problems in small-angle-scattering-data treat- 
ment is considered. Simple regularization algorithms 
are proposed for solving convolution equations in 
data desmearing (slit-width and polychromaticity 
problems) as well as for polydispersity problems. A 
general indirect approach of data processing based 
on the regularization method is described. Com- 
parison with other data-treatment methods is made. 

Introduction 

Small-angle scattering (SAS) is widely used for struc- 
ture investigations of substances of different natures. 
SAS studies are of much importance for disordered 
disperse systems with colloidal inhomogeneities since 
their inner structures are difficult to study by other 
methods (Glatter & Kratky, 1982; Feigin & Svergun, 
1987). 

Experimental data processing (the reduction of 
instrumental distortions) is the necessary step in the 
structural analysis of SAS data. Smearing effects in 
SAS owe their origin to finite dimensions and poly- 
chromaticity of the radiation beam. The main 
equations connecting the experimental data set ue(s~) 
[s = 4rr(sin 0)/X, 20 is the scattering angle, ~ is the 
average wavelength] with ideal curve I(s) can for 
isotropic scattering be written as 

ue(s,)=u(s,)+~, 

(ei is the statistical error in the point si), 

co 

u(s)=  ~ Ww(x)F(s -x )dx  (1) 
--OC 

(smearing caused by the slit-width effect), 

cc 

F ( s ) =  ~ Wl(t)J[(s2+t2)l/2]dt (2) 
--oo 

(slit-height effect), 

co 

J ( s ) =  I W~(A)I(s/A)dA (3) 
0 

0108-7673/88/030244-07503.00 

(smearing caused by the beam polychromaticity). 
Here the normalized weighting functions Ww(x), 
Wt(t) and W~(A) depend on the experimental condi- 
tions. 

A number of methods was developed to solve these 
equations separately (step-by-step). The slit-height- 
correction problem, which is of much importance in 
X-ray SAS investigations, has been treated by many 
authors and several reliable algorithms have been 
developed (Heine & Roppert, 1962; Schedrin & 
Feigin, 1966; Vonk, 1971; Deutsch & Luban, 1978). 
Fewer papers have been devoted to slit-width (Taylor 
& Schmidt, 1967; Rolbin, Feigin & Schedrin, 1977) 
and polychromaticity (Zipper, 1969) problems, which 
can now be of value in synchrotron and neutron SAS 
studies. When solving (1)-(3), one faces the problem 
that they are unstable with respect to experimental 
data errors. Therefore, preliminary data smoothing is 
frequently necessary to reduce the random noise. 
Moreover, the termination effects arise because the 
experimental data are known only in a finite angle 
region [ S t a i n ,  S m a x ] .  

Several methods have been suggested for simul- 
taneous reduction of the experimental distortions, i.e. 
for solving the general equation 

cc 

- c o - c o  0 

xl{[(s-u)2+t2]l/2/A}dA dtdu. (4) 

The iteration procedure of Lake (1967) was probably 
the first attempt to do this. Another type of general 
procedure, the so-called indirect approach, where the 
solution is represented by some parametrization, has 
recently been developed. Here the methods making 
use of the sampling theorem (Moore, 1980; Taupin 
& Luzzati, 1982) should be mentioned which allow 
one to describe the solution with minimal number of 
parameters. Spline functions are also used for the 
parametrization (see Schelten & Hossfeld, 1971; 
Glatter 1977, 1980a, b). 

Among the indirect methods, Glatter's (1977, 
1980a, b) approach found widest practical applica- 
tion. Here a characteristic function describing the 
system in real space is represented as a sum of B- 
spline functions and the coefficients of the expansion 
are to be found. For monodisperse systems the 
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parametrization of the distance distribution function 
o o  

_I s2I(s) sin (sr) ds (5) 1 
p( r) =2--- 5 sr 

0 

is used; for polydisperse systems, the size distribution 
function D(R)  is searched for (see below). Indirect 
methods are stable to random errors and to termina- 
tion effects, being, however, more complicated in use 
than the step-by-step algorithms and requiring more 
a priori information about the object. 

Equations of data treatment represent the so-called 
ill-posed problems. Such problems can be effectively 
solved with the Tikhonov regularization method 
(Tikhonov & Arsenin, 1977). Here the possibilities of 
application of the regularization method to SAS data 
treatment are examined in comparison to other de- 
smearing procedures. 

Tikhonov's regularization method 

First of all we shall briefly describe Tikhonov's 
method for solving incorrect problems. The condi- 
tions of correctness (Hadamard, 1932) are as follows: 
let us consider the operator equation 

A [ z ] :  u, (6) 

z ~ Z, u ~ U; Z and U are some'metric spaces. The 
problem is called correct if (i) a unique solution exists 
for any u ~ U; (ii) the solution is stable with respect 
to errors in u and A (i.e. operator A -~ determined 
over all U is continuous). Otherwise the problem is 
called ill posed or incorrect. 

The regularization method for ill-posed problems 
was proposed and substantiated by Tikhonov (1943, 
1963) and is now of wide application (Tikhonov & 
Arsenin, 1977; Hofmann, 1986). The main idea of the 
method is to use the a priori information about the 
solution. It can be done as follows. Instead of solving 
with respect to function z an ill-posed problem (6), 
where the inverse operator A -~ exists, but is not 
necessarily continuous, function u and operator A 
are known with error bounds 6 and h respectively: 

I l u - u ° l l ~ _ - _ ~ ;  sup IlA°[zJ-A[zJllU<_h 
z~z,~o Ilzllz 

(u ° and A ° are exact right-hand part and operator, 
respectively), a correct problem of minimization of 
Tikhonov's functional 

T~Fz] --[IAFz] - ull ~ + a a [ z ]  (7) 

is to be solved. Here [lu]lu and IlZllz denote the norms 
in U and Z spaces, O is a non-negative stabilizing 
functional, a > 0 is a regularization parameter. It was 
shown by Tikhonov that if the parameter a is 
specifically correlated with 6 and h, then z,,, minimiz- 
ing functional (7), is tending to the exact solution of 

(6) being stable to random errors under 6 and h 
tending to zero. The regularization parameter a may 
be chosen, for example, using the generalized dis- 
crepancy method (Tikhonov & Arsenin, 1977) as a 
solution of the equation 

IlAEz~]- ull%-- (8 + hllzo Ilz) 2+~2(u, A), 

where 

/z(u, A)=  inf I I A [ z ] -  ullu.  
z E Z  

If the operator A is given exactly, the discrepancy 
method can be used: 

[ I A [ z = ] - u l [ ~ - -  ~ 2 . 

Other ways of choosing the regularization parameter 
are considered below. 

The stabilizer f2[z] is taken so as to fulfil a priori 
information about the solution (boundness, smooth- 
ness etc.). The squared norm of solution [[z[[~z is 
frequently used. Then the functional T~ is strictly 
convex, being minimized by a unique function z~. So 
the problem of minimization (7) can easily be solved 
by standard routines (see Tikhonov, Goncharsky, 
Stepanov & Yagola, 1983). 

For further considerations of the ill-posed prob- 
lems dealt with, the norms in U and Z spaces are to 
be defined. With experimental data accuracy and 
discretization taken into account, it is natural to take 

N 

[[u[12u=(1/N) Y. u2(s,)/o~, (8) 
i = 1  

where N is the number of data points, o-i is the mean 
square deviation in the ith experimental point. Then 
6 = [] u ° -  u I] u "" 1, being in fact a sum of normalized 
random numbers (Brandt, 1970). The Z space can be 
defined with the norm 

Ilzll~ = {z~(x) + p[z'(x)] 2} dx, (9) 

which demands the function z and its first derivative 
to be integrable (p is a constant chosen from the 
metric considerations). 

Solution of convolution equations 

Slit-width correction 

Integral equation (1) for the slit-width correction 
is a convolution equation. From the convolution 
properties of the Fourier transformation (denoted as 
F) its solution 

F(s) : F-'{F[u(s)]/F[ Ww(s)]} 

= F-'{~(o~)/~w(,o)} (10) 

can be readily derived (Sneddon, 1951). This 'exact' 
solution is, however, rather sensitive to random errors 
in u(s). The regularization method enables one to 
write down a stable solution. For the stabilizer of 
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type (9) with p = 1 the function minimizing the func- 
tional (7) is (Goncharsky, Cherepaschuk & Yagola, 
1978) 

oo 

1 f ff 'w(-w)a(w) exp( - iws)  do 
F~, (s) = ~--~ a l~,w(_to)ffCw(W)+a(l+to2). (11) 

--OO 

To verify the stability of the solution several model 
calculations were made. Model scattering curves were 
smeared according to (1) and statistical noise was 
imposed on the smeared curves. After this the curves 
were restored from the obtained data sets taken in 
intervals [Smin, Smax]; the a value was determined by 
the discrepancy method. Fig. 1 presents the results 
of application of the regularization method and of 
Taylor & Schmidt's (1967) algorithm to a model curve. 
One can see that the solution (11 ) is much more stable. 

Correction for polychromaticity 

The same idea can be applied to the equation of 
polychromaticity. On taking the Mellin transform 
from both parts of (3) and using the convolution 
theorem for this transform (Sneddon, 1951), one 
obtains 

where K ( A ) =  AWa(A), and 
oo 

f(sc)= J f(s)s ¢-' ds 
0 

is a Mellin image of the function f(s). Svergun & 
Semenyuk (1986) showed that for the stabilizer (9) 

I g  I 

- 2  
I I I 

0 0.01 0.02 0.03 s 

Fig. 1. Restoration of model scattering intensity of homogenee 
sphere smeared by slit-width effect: - -  exact curve; +++ smear 
curve with statistical noise of 3%; x x x and OOO are desmeared 
curves according to Taylor & Schmidt (1967) and as obtained 
by the regularization technique, respectively. 

the regularized solution can be written as 
c + i ~  

1 I /~*(~).~(~)s -e d~: 
I"(s)-2,n. i ~, (~)~(~)+  ~(1 +1~12) =. 

e -  ioc 

(12) 

Here c is a constant which can be chosen so as to 
facilitate the computations. 

The solution was tested on model examples and 
compared with several other methods for solving (3). 
The restoration of a homogeneous-sphere scattering 
curve by Glatter's (1977) method, Lake's (1967) iter- 
ation procedure and the regularization method is 
presented in Fig. 2. The iteration procedure is 
unstable, Glatter's method, although stable, con- 
sumes more computer time and memory (it also needs 
more parameters adjusted). It should be noted here 
that Glatter's indirect approach offers much wider 
possibilities than polychromaticity corrections (see 
Introduction). However, comparison with the 
approach was done since up to now it has in fact 
been the only reliable method for polychromaticity 
correction. 

Polydispersity equation 

The regularization approach using the convolution 
properties can also be applied to solve the equation 
of polydispersity. If the investigated system is rep- 
resented by an ensemble of randomly oriented similar 
particles described by a distribution function D(R) = 
rn2(R)DN(R) [m(R)  is the scattering length, DN(R) 
the number of particles of size R], then the SAS 
intensity is given by 

R m a x  

l ( s ) =  J D(R)Io(sR)dR, (13) 
R m i n  

Ig 

3 -  ~. 

2- -  

1 

! 

0-1 ~b ~ " 

Fig. 2. Corrections for polychromaticity: - -  exact curve; x xx 
smeared curve with 3% noise; restoration by A&& Lake (1967), 
i l R l i  Glatter (1977), OOO regularization technique. 
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where Io(sR) is the form factor of particles, Rmi n and 
Rma x a r e  the minimal and maximal sizes of particles 
in the ensemble. The problem of finding D(R) under 
the given I(s) and Io(sR) is of great practical value. 

Several methods have been proposed for solving 
(13). Among them the analytical approach (Fedorova 
& Schmidt, 1978) is of wide practical application, 
where the exact solution is written for some types of 
form factor [the solid-sphere form factor is used most 
frequently, see Letscher & Schmidt (1966), Walter, 
Gerber & Kranold (1983)]. The solution is, unfortu- 
nately, rather sensitive with respect to termination 
effects, therefore strong artificial oscillations may 
deteriorate the resulting D(R) function. Another 
simple method proposed by Plavnik, Troshkin, 
Kozhevnikov, Ruzinov & Khrustaleva (1985) allows 
one to estimate both the D(R) function and the 
anisometry of the particles (however, only rough 
estimation can be achieved). The indirect method 
(Glatter, 1980a) enables reliable solutions to be 
obtained but requires a priori information about the 
range of definition of the D(R) function. 

This proves that the polydispersity equation can 
be easily solved using the Mellin transform, as for 
the polychromaticit'y problem. In fact, substituting 
x= 1/R in (13) and denoting W(x)= R,D(R), one 
gets 

c o  

I ( s ) =  I W(x)Io(s/x) dx/x (14) 
o 

and similar to (12) the regularized solution can be 
written as 

c + i c o  

1 f Io*(~: ) I (~)R e-I d ~  
D'~(R)=2"tri j Io*(~)Io(~)+a(l+l~:12) 2 (15) o 

c -  i co  

The regularization approach was compared to the 
methods of Letscher & Schmidt (1966) and Glatter 
(1980a). Fig. 3 illustrates the results obtained with 
the bimodal volume distribution function Dr(R)= 
m(R)DN(R). One can see that all the methods enable 
one to restore the model distribution fairly well; 
however, it should be noted that a special extrapola- 
tion procedure was applied to avoid termination 
effects in Schmidt's approach whereas the regulariz- 
ation method is stable with respect to these effects. 
As to Glatter's method, the same reasoning as for the 
polychromaticity problem can be repeated. 

A Fortran-77 program package based on the con- 
sidered regularization procedures has been written 
[the slit-height-correction routine of Schedrin & 
Feigin (1966) was also used]. Selection of the regu- 
larization parameters was done by the discrepancy 
method; with no information about the input errors 
available, reasonable a estimation could be obtained 
from the condition I lA[z , , ] -ul l~=min (Svergun & 
Semenyuk, 1986). The package was applied to 

neutron SAS data processing for the 'Membrane-2' 
diffractometer (Institute of Nuclear Physics, Gat- 
china, USSR). Here the collimation and especially 
polychromaticity smearing effects were rather strong 
(see Agamalyan, Drabkin, Deriglazow & Krivshich, 
1984; Agamalyan, Krivshich, Svergun & Semenyuk, 
1985). Model calculations with spectral and collima- 
tion functions of the diffractometer have proved the 
high reliability of the package. Fig. 4 illustrates the 
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Fig. 3. Restoration of model volume distribution function for a 
polydisperse system of homogeneous spheres: - -  exact curve; 
©OO Letscher & Schmidt's (1966) method; x x x  Glatter's 
(1977) method, + + +  regularization technique. 
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Fig. 4. App l ica t ion  of  the reguladzat ion procedures for neutron- 
scattering-data treatment of  polystyrene latex sample: © © ©  
experimental data; + + +  after col l imat ion corrections; - - -  com- 
pletely desmeared curve. 
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application of the package for the desmearing of the 
experimental scattering intensity of polystyrene latex 
samples; the restored size distribution function is 
shown in Fig. 5 together with the histogram obtained 
by electron microscopy. This example illustrates the 
reliability of the regularization procedures described 
and their usefulness in the data treatment problems. 

General method of SAS data treatment 

This is a substantial shortcoming in the application 
of the step-by-step algorithms of data processing. 
Although ill-posed problems (1)-(3) can be solved 
successfully, only a rough estimation can be obtained 
about the error bounds in each solution. Therefore, 
a full account of experimental data accuracy cannot 
be expected. A general approach of SAS data treat- 
ment using the regularization technique is described 
below. 

Let us consider scattering by monodisperse and 
polydisperse systems. For the monodisperse system, 
ideal scattering intensity is connected to the function 
p(r) by 

/max 

I ( s )=4z r  J" p(r) sin (sr)/sr dr, (16) 
0 

lmax is a maximal chord in the particle. For the poly- 
disperse system of similar particles, scattering 
intensity is connected to the size distribution function 
according to (13). In these important cases the prob- 
lem of data treatment can be solved indirectly by 
finding a finite distribution function (see 
Introduction). 

The indirect approach can be realized in a simple 
way without parametrization of the solution to be 
found. Let us substitute integral expressions (16) and 

0 .5  

r 

300 - - -  700 R 

I 
I 
I 
I 
i 
l 
l 
\ 

\ 
I \ d  

~oo 

Fig. 5. Volume distribution function of polystyrene latex as calcu- 
lated by regularization technique (---) and electron microscopy 
(--). 

(13) in (4) and change the order of integration. Thus, 
for monodisperse systems one can write 

I max 

u(s )=  j" Kl( s, r)p( r) dr, (17) 
0 

where 

K,(s,r) =4rrr2 I ~ Ww(x)Wt(t)W~(h) 
- o o - o o  0 

x (sin { [ ( s -  x) 2 + t2] '/2rlh }) 

x{[(s-x)2+t2]~/2r/h} -~ dh dtdx. (18) 

For polydisperse systems we obtain 
Rmax 

u(s )=  .~ K2(s ,R)D(R)dR,  (19) 
Rmln 

where 

K2(s,R)= I I I Ww(x)W,(t)WA(A) 
- o c - o c  0 

× lo{[(s -x)2+ t2]R/h} dh dt dx. (20) 

The kernels K~ and K2 are fixed under given experi- 
mental conditions and can be evaluated with any 
quadratures. 

Therefore, the problem of data treatment for 
monodisperse and polydisperse systems is reduced 
to the solution of (17) and (19) respectively, which 
are in fact Fredholm integral equations of the first 
kind. The Tikhonov functional for (17) can be written 
a s  

T~,[p]= (ZlsJo'~) Zlr ~ K,(s,,rj)p(rj)-u(s,) 
i = 1  j = l  

+a z~r ~ p2(rj)+p(Ar)-~ 
J = l  

x Y. [p(rj)-p(rj_,)] 
j = 2  

= min. 

Here Asi = si - s~-l, and the function p(r) is searched 
for at M equidistant points, Ar = l m a x / ( M  - 1). 
Differentiating T~, [ p] over p(rj) and putting the result 
to zero for j =  1 , . . . ,  M, we obtain an M x M system 
of linear equations [ p(r~) are unknowns] with a sym- 
metric positive-definite matrix, which can easily be 
solved by standard routines. 

A similar equation can be written for the D(R) 
function. Special cases of monodisperse systems 
[lamellar particles, long rods, see Glatter (1980b)] 
can also be treated in this way. 

Fast and reliable choice of the regularization par- 
ameter is probably the most important problem. It is 
known that when solving equations of type (17) the 
best a value proves to be somewhat smaller than the 
value provided by the discrepancy method (see e.g. 



Hofmann, 1986). To avoid oversmoothing of the solu- 
tion, several methods were tested for refining the 
regularization parameter, in particular, the so-called 
quasioptimality criterion [[]t~ Op,~/Oa ]1 = min, a > 0; 
(Tikhonov & Arsenin, 1977)], point-of-inflection 
criterion [-0][p,~ll/0a =min ,  oe>0, see Glatter 
(1977)]. It proved that rough estimation of a by the 
generalized discrepancy method followed by its 
refinement with the quasioptimality criterion ensures 
reliable determination of the a value. 

A Fortran 77 program using the approach described 
has been written which allows data treatment via both 
p(r) and D(R) functions. Economic computing 
algorithms (Tikhonov et al., 1983) are used for fast 
solving the Euler equation for different a values; the 
selection of a is performed as a straightforward 
routine. Fig. 6 presents an example of application of 
the method to a model curve smeared with both 
collimation and polychromaticity effects. 

Ig / 

(a) 
0.'05 0.1 0.15 0.2 

-7  ala2 -6  

(b) 

The approach described is similar to the indirect 
transform techniques (in particular to Glatter's). In 
Fig. 7 a model example is presented where the two 
methods are compared. They give nearly the same 
results being rather stable with respect to statistical 
errors and termination effects. Both of them require 
information about the range of definition of the p(r) 
[or D(R)]  function. At the same time, the fact that 
no parametrization is used makes the regularization 
approach more general; automatic choice of the regu- 
larization parameter facilitates its application (a 
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Fig. 6. Restorat ion of  the model  curve smeared with collimation 
and polychromatici ty  effects using the regularization approach.  
(a)  The scattering curves: - -  exact curve; + + +  smeared curve 
with 5% noise; O O O  restored curve. (b) Selection of  regulariz- 
ation pa ramete r :  O O O  general discrepancy method gives o~ 
value; + + +  point of  inflection method:  oq value; - -  quaziop- 
timal method:  a 2 value. 
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Fig. 7. Compar ison  of  Glatter 's  method with the regularization 
technique. (a)  The scattering curves: - -  exact scattering curve 
from the sphere of  radius R = 100; O O O  smeared curve with 
5% noise, stain = 0"016, Smax = 0"06 ,~,-~; XXX and 0 0 0  restor- 
ation with the two methods,  respectively, lma x = 240. (b) The 
distance distribution functions: notations are the same as in (a) .  
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similar pa ramete r  in Glat ter 's  approach  needs to be 
selected by the user). 

The regularization method has been also applied 
by Provencher  (1982) for inverting noisy linear 
operator  equations.  A general Fortran IV program 
described in the paper  allows a constrained solution 
to be found by means of  quadrat ic  p rogramming  
algorithms; the discrepancy method is used to select 
the a value. One may expect that Provencher 's  
package as applied to SAS problems would lead to 
similar results. At the same time our algori thm differs 
from Provencher 's  in computing procedures (type of  
stabilizer, solving the least-squares problems, choice 
of  regularization parameters) .  Moreover,  the pre- 
sented algori thm is designed especially for SAS 
problems being much more compact  in program 
realization. 

Concluding remarks 

Two possibilities of  applicat ion of  the regularization 
method in SAS data  t reatment  have been considered.  
The use of  the method for solving the convolution 
equations shows a number  of  advantages in com- 
parison with other  methods.  Simple and stable regu- 
larized solutions can be written for the problems of  
slit-width and polychromatici ty desmearing as well 
as for the polydispersity equation. Therefore the 
application of  the regularization technique combines 
reliability of  the indirect t ransform methods with the 
simplicity of  s tandard  routines. 

The general  approach  based on regularization is 
similar to several indirect algorithms (e.g. those of  
Moore,  Glat ter  and Provencher).  However,  some 
features (such as the ways of  using a priori  informa- 
tion, stabilization of  the solution, comput ing 
algorithms) are different in these methods.  A forth- 
coming paper  is p lanned where the problems of  con- 
straints, choice of  stabilizers and error propagat ion  
will be discussed. 

The question may arise whether  it is better to use 
stepwise procedures  or an indirect approach.  One 
cannot  answer  this definitely. In fact, with appropr ia te  
information in hand one can obtain excellent results 
by indirect methods even if the quality of  the experi- 
mental  da ta  is not very good (poor  accuracy,  small 
angular  range measured) .  On the other hand,  when 
the experimental  data  set is representative it would 
be better to use stepwise algorithms which do not 
require a priori  information about  the object. 
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